【 問 題 】
-
1問1点の10問で10点満点の○×式試験がある。
第1問から第5問まではA君とB君の答えは同じ○であった。
第6問から第10問までは2人の答えはすべて異なっていた。
A君は8点、B君は7点であった。
第1問から第5問まで、○が正解なのは何問あるか?
-
A君が正解した問題の集合をAとし、B君が正解した問題の集合をBとする。

第1問から第5問は A ∩ B または A ∩ B の要素である。
第6問から第10問は A ∩ B または A ∩ B の要素である。
Aの要素の数は8個である。
Bの要素の数は7個である。
A ∩ B または A ∩ B の要素の数は5個である。
A ∩ B または A ∩ B の要素の数は5個である。
A ∩ B の要素の数は最大5個であり、Aの要素の数は8個より、A ∩ B の要素の数は3個以上でなければならない。
よって、 A ∩ B の要素の数は2個以下でなければならない。
A ∩ B の要素の数が1または2個であると仮定する。
すると、A ∩ B の要素の数は3または4個になり、かつ、A ∪ B の要素の数は8または9個になる。
A ∩ B の要素の数は最大5個であり、Aの要素の数は8個より、A ∩ B の要素の数は3個以上でなければならない。
すると、Aの要素の数は8個より、A ∩ B の要素の数は4個以上になる。
したがって、A ∩ B の要素の数は1個以下になる。
したがって、Bの要素の数は5個以下になる。
これはBの要素の数が7個であることと矛盾する。
したがって、A ∩ B の要素の数は0個であることが分かった。
よって、 A ∩ B の要素の数は5個である。
というわけで、答えは 5問 である。
論理学 へ戻る